53,455 research outputs found

    Self-Tuning at Large (Distances): 4D Description of Runaway Dilaton Capture

    Full text link
    We complete here a three-part study (see also arXiv:1506.08095 and 1508.00856) of how codimension-two objects back-react gravitationally with their environment, with particular interest in situations where the transverse `bulk' is stabilized by the interplay between gravity and flux-quantization in a dilaton-Maxwell-Einstein system such as commonly appears in higher-dimensional supergravity and is used in the Supersymmetric Large Extra Dimensions (SLED) program. Such systems enjoy a classical flat direction that can be lifted by interactions with the branes, giving a mass to the would-be modulus that is smaller than the KK scale. We construct the effective low-energy 4D description appropriate below the KK scale once the transverse extra dimensions are integrated out, and show that it reproduces the predictions of the full UV theory for how the vacuum energy and modulus mass depend on the properties of the branes and stabilizing fluxes. In particular we show how this 4D theory learns the news of flux quantization through the existence of a space-filling four-form potential that descends from the higher-dimensional Maxwell field. We find a scalar potential consistent with general constraints, like the runaway dictated by Weinberg's theorem. We show how scale-breaking brane interactions can give this potential minima for which the extra-dimensional size, \ell, is exponentially large relative to underlying physics scales, rBr_B, with 2=rB2eφ\ell^2 = r_B^2 e^{- \varphi} where φ1-\varphi \gg 1 can be arranged with a small hierarchy between fundamental parameters. We identify circumstances where the potential at the minimum can (but need not) be parametrically suppressed relative to the tensions of the branes, provide a preliminary discussion of the robustness of these results to quantum corrections, and discuss the relation between what we find and earlier papers in the SLED program.Comment: 37 pages + appendice

    The Gravity of Dark Vortices: Effective Field Theory for Branes and Strings Carrying Localized Flux

    Full text link
    A Nielsen-Olesen vortex usually sits in an environment that expels the flux that is confined to the vortex, so flux is not present both inside and outside. We construct vortices for which this is not true, where the flux carried by the vortex also permeates the `bulk' far from the vortex. The idea is to mix the vortex's internal gauge flux with an external flux using off-diagonal kinetic mixing. Such `dark' vortices could play a phenomenological role in models with both cosmic strings and a dark gauge sector. When coupled to gravity they also provide explicit ultra-violet completions for codimension-two brane-localized flux, which arises in extra-dimensional models when the same flux that stabilizes extra-dimensional size is also localized on space-filling branes situated around the extra dimensions. We derive simple formulae for observables such as defect angle, tension, localized flux and on-vortex curvature when coupled to gravity, and show how all of these are insensitive to much of the microscopic details of the solutions, and are instead largely dictated by low-energy quantities. We derive the required effective description in terms of a world-sheet brane action, and derive the matching conditions for its couplings. We consider the case where the dimensions transverse to the bulk compactify, and determine how the on- and off-vortex curvatures and other bulk features depend on the vortex properties. We find that the brane-localized flux does not gravitate, but just renormalizes the tension in a magnetic-field independent way. The existence of an explicit UV completion puts the effective description of these models on a more precise footing, verifying that brane-localized flux can be consistent with sensible UV physics and resolving some apparent paradoxes that can arise with a naive (but commonly used) delta-function treatment of the brane's localization within the bulk.Comment: 36 pages + appendices, 7 figure

    EFT for Vortices with Dilaton-dependent Localized Flux

    Full text link
    We study how codimension-two objects like vortices back-react gravitationally with their environment in theories (such as 4D or higher-dimensional supergravity) where the bulk is described by a dilaton-Maxwell-Einstein system. We do so both in the full theory, for which the vortex is an explicit classical `fat brane' solution, and in the effective theory of `point branes' appropriate when the vortices are much smaller than the scales of interest for their back-reaction (such as the transverse Kaluza-Klein scale). We extend the standard Nambu-Goto description to include the physics of flux-localization wherein the ambient flux of the external Maxwell field becomes partially localized to the vortex, generalizing the results of a companion paper to include dilaton-dependence for the tension and localized flux. In the effective theory, such flux-localization is described by the next-to-leading effective interaction, and the boundary conditions to which it gives rise are known to play an important role in how (and whether) the vortex causes supersymmetry to break in the bulk. We track how both tension and localized flux determine the curvature of the space-filling dimensions. Our calculations provide the tools required for computing how scale-breaking vortex interactions can stabilize the extra-dimensional size by lifting the dilaton's flat direction. For small vortices we derive a simple relation between the near-vortex boundary conditions of bulk fields as a function of the tension and localized flux in the vortex action that provides the most efficient means for calculating how physical vortices mutually interact without requiring a complete construction of their internal structure. In passing we show why a common procedure for doing so using a δ\delta-function can lead to incorrect results. Our procedures generalize straightforwardly to general co-dimension objects.Comment: 45 pages + appendix, 6 figure

    Prediction of the flow-field interference induced by the long-range laser velocimeter in the Ames 40- by 80-foot and the 80- by 120-foot wind tunnels

    Get PDF
    The predicted flow disturbances induced in the test sections of the Ames 40- by 80-Foot Wind Tunnels by the presence of the Long-Range Laser Velocimeter (LRLV) are presented. The predictions were made using a potential-flow paneling code to model the test section and the LRLV, and a calculation of the resulting flow field was made. The flow velocity and angularity were calculated at numerous locations in the flow field relative to the LRLV, and the results are presented

    Short Note: Report of mummified leopard seal carcass in the southern Dry Valleys, McMurdo Sound, Antarctica.

    Get PDF
    The wide spread occurrence of mummified seal and penguin carcasses tens of kilometres from the open ocean is an interesting phenomenon occurring in the Antarctic Dry Valleys. Mummified seal carcasses were first reported by Scott’s expedition in 1903 (Scott 1969), and live seals and seal carcasses have since been reported many kilometres from the nearest ice-free ocean. Seal carcasses found in the McMurdo Dry Valleys are predominantly crabeater seals (Lobodon carcinophaga (Hombron & Jacquinot)) with a smaller number of Weddell seals, (Leptonychotes weddellii (Lesson)), also reported. Here we present only the second published report of a leopard seal carcass from the McMurdo Dry Valleys

    In-vivo magnetic resonance imaging of hyperpolarized silicon particles

    Full text link
    Silicon-based micro and nanoparticles have gained popularity in a wide range of biomedical applications due to their biocompatibility and biodegradability in-vivo, as well as a flexible surface chemistry, which allows drug loading, functionalization and targeting. Here we report direct in-vivo imaging of hyperpolarized 29Si nuclei in silicon microparticles by MRI. Natural physical properties of silicon provide surface electronic states for dynamic nuclear polarization (DNP), extremely long depolarization times, insensitivity to the in-vivo environment or particle tumbling, and surfaces favorable for functionalization. Potential applications to gastrointestinal, intravascular, and tumor perfusion imaging at sub-picomolar concentrations are presented. These results demonstrate a new background-free imaging modality applicable to a range of inexpensive, readily available, and biocompatible Si particles.Comment: Supplemental Material include

    Photovoltaic array: Power conditioner interface characteristics

    Get PDF
    The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes

    Fast Mesh Refinement in Pseudospectral Optimal Control

    Get PDF
    Mesh refinement in pseudospectral (PS) optimal control is embarrassingly easy --- simply increase the order NN of the Lagrange interpolating polynomial and the mathematics of convergence automates the distribution of the grid points. Unfortunately, as NN increases, the condition number of the resulting linear algebra increases as N2N^2; hence, spectral efficiency and accuracy are lost in practice. In this paper, we advance Birkhoff interpolation concepts over an arbitrary grid to generate well-conditioned PS optimal control discretizations. We show that the condition number increases only as N\sqrt{N} in general, but is independent of NN for the special case of one of the boundary points being fixed. Hence, spectral accuracy and efficiency are maintained as NN increases. The effectiveness of the resulting fast mesh refinement strategy is demonstrated by using \underline{polynomials of over a thousandth order} to solve a low-thrust, long-duration orbit transfer problem.Comment: 27 pages, 12 figures, JGCD April 201

    Effect of disorder studied with ferromagnetic resonance for arrays of tangentially magnetized sub-micron Permalloy discs fabricated by nanosphere lithography

    Full text link
    Tangentially magnetized trigonal arrays of sub-micron Permalloy discs are characterized with ferromagnetic resonance to determine the possible contributions to frequency and linewidth from array disorder. Each array is fabricated by a water-surface self-assembly lithographic technique, and consists of a large trigonal array of 700 nm diameter magnetic discs. Each array is characterized by a different degree of ordering. Two modes are present in the ferromagnetic resonance spectra: a large amplitude, `fundamental' mode and a lower amplitude mode at higher field. Angular dependence of the resonance field in a very well ordered array is found to be negligible for both modes. The relationship between resonance frequency and applied magnetic field is found to be uncorrelated with array disorder. Linewidth is found to increase with increasing array disorder

    Full one-loop electroweak corrections to e+e- to 3 jets at linear colliders

    Get PDF
    We describe the impact of the full one-loop electroweak terms of O(alpha_s alpha_EM^3) entering the electron-positron into three-jet cross-section from sqrt(s)=M_Z to TeV scale energies. We include both factorisable and non-factorisable virtual corrections and photon bremsstrahlung. Their importance for the measurement of alpha_S from jet rates and shape variables is explained qualitatively and illustrated quantitatively, also in presence of b-tagging.Comment: 6 pages, to appear in the proceedings of the workshop "LC09 -- e+e- Physics at the TeV scale and the Dark Matter Connection", 21-24 September 2009, Perugia (Italy). Minor corrections, references added
    corecore